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ABSTRACT. In this paper some non-linear effects for the mechanics of sea wave groups
with large waves are investigated, either for waves in an undisturbed field or for waves
in front of a vertical wall.

To the first-order in a Stokes expansion, Boccotti’s quasi-determinism theory enables us
to foresee the mechanics of wave groups, either in undisturbed or in diffracted fields,
when a large wave occurs. The first formulation of this theory shows the random group
mechanics when a large crest height occurs (‘New wave’); the second theory
formulation gives the random group mechanics when a large crest-to-trough wave
height occurs.

The quasi-determinism theory in both formulations, for undisturbed fields, was
extended recently to the second-order by the author. In this paper the procedure to
derive the second-order solution is analyzed and is applied to random wave groups in
front of a vertical wall. The non-linear effects are then investigated in space-time
domain, and it is obtained a good agreement of analytical predictions with both field
data and data from numerical simulation.

1. Introduction

The study of non-linear sea waves is a topic of interest for the comprehension of freak waves,
which occur in the ocean, damaging ships and sea structures.

For the explanation of the occurrence of freak waves an easy way is to consider a strong
current, opposite to the wave direction, which amplify the wave generating large waves.
Really, most of the freak waves were recorded without any current, so that different
approaches have to be considered [see, for example, Slunyaev et al. (2002)].

Here the mechanics of sea wave groups, to the first-order in a Stokes expansion, is firstly
investigated applying the quasi-determinism (QD) theory (Boccotti, 1981, 1989, 1997, 2000).
This theory, which enables us to predict the linear free surface displacement and velocity
potential when a large wave occurs in a fixed time and location, may be applied either for
waves in an undisturbed field or in the presence of a structure (see Boccotti, 2000 for a
complete review). A verification was found during some small scale field experiments, both
for progressive waves (Boccotti et al., 1993a) and for waves interacting with structures
(Boccotti 1995, 1996, Boccotti et al., 1993b).

Phillips et al. (1993a, 1993b), proposed also an alternative approach for the derivation of
the quasi-determinism theory and found a further field verification in the Atlantic Ocean.
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The QD theory was given in two formulation: the first one (Boccotti, 1981, 1982) enables us
to predict what happens in the space-time domain when a large crest occurs [the theory, in its
first formulation and for time domain, was renamed as ‘New wave’ by Tromans et al. (1991)];
the second formulation enables us to predict what happens in the space-time domain when a
large crest-to-trough wave height occurs.

In this paper the QD theory, in both the formulations, is extended to the second-order both for
waves in an undisturbed field (see also Arena, 2005) and in front of a vertical wall (wave
reflection). This result is obtained by solving the second-order system of differential
equations governing an irrotational flow with a free surface.

The results for the second-order ‘New wave’ theory in an undisturbed field (that is the first
formulation of the QD theory, for the highest wave crest), particularized for deep water, are
identical to those derived by Fedele & Arena (2003) with a different approach (see also Arena
& Fedele, 2005; Fedele & Arena, 2005).

Finally the analytical predictions, for waves in an undisturbed field, are compared with data of
Montecarlo simulation of non-linear random waves and with field data given by Taylor and
Williams (2002) from WACSIS dataset (Forristall et al, 2002).

2. The quasi-determinism theory

Boccotti developed the quasi-determinism (QD) theory, which is exact to the first-order in a
Stokes expansion, in eighties, in two formulations.

The first formulation (‘New wave’) deals with the crest height, and shows that the space-time
profile of highest crest is proportional to the autocovariance function (see Appendix B).

The second formulation of the theory deals with the crest-to-trough height; it was derived by
obtaining firstly the probability density function of the surface displacement at point
X, +X,Y, +Y ,attime t, + T, given the condition

1 w1
ﬂ(xo’yo’to):EHr n(xolyorto +T ):_EH (1)

where t, is an arbitrary time instant, (x,,y,) an arbitrary point, H the crest-to-trough wave

height and T~ the abscissa of the absolute minimum of the autocovariance function (which is
assumed to be also the first local minimum of this function on the positive domain: this
condition is always verified for wind waves).

The theory shows then that, as H/o—oo, condition (1) becomes both sufficient and
necessary for the occurrence of a wave of given height H (for the formal derivation see
Boccotti, 1989, 1997, 2000). Therefore, as H/oc—oo, the linear random function

m(x, +X,y, +Y,t, +T) tends asymptotically to the deterministic function

Y(X,Y,T)-¥(X,Y,T-T" H

_X+X,0+Y|t0+T: - .
(X, Y ) ¥(0,0,0)-¥(0,0,T") 2

)

In words we have that “if a wave with a given height H occurs at a fixed point (x,,y,) and H

is very large with respect to the mean wave height at this point, we may expect the water
surface near (x,,Y,) to be very close to the deterministic form (2)”.

The linear velocity potential, when the large wave of height H occurs, is given by
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O(X,Y,2,T)-®(X,Y,zT-T") H

A%+ X, Y, +Y,2,t, +T) = B . 3
¢1( 0 yo ) “P(0,0,0)—W(0,0,T ) 2 ( )
Note that in Equations (2) and (3) X,Y, z and T are the independent variables.
The space-time covariances W(X,Y,T) and ®(X,Y,z,T) are defined respectively as
Y(XY, T)=<n(X,, Yo, 0)n(X, + X, Y, + Y, t+T) >, 4)
D(X,Y,z,T)=<n(X,, ¥, )X, + X, ¥, +Y,Z,t+T)>. (5)

Both free surface displacements (2) and velocity potential (3) may be rewritten as a function
of the directional spectrum, for the more general condition of three-dimensional waves.
For long-crested random waves, in an undisturbed field, we have (Boccotti, 1989, 2000):

(Y, +Y.t,+T) =
H J': E(w){cos[(p(a),Y,T)]—COS[(p(a),Y,T)+a)T*]}da) (6)
2 IOwE(w)[l—COS(a)T*)}ia)

Jw E(w) cosh[k(d +2)]
Jo  »  coshlkd]

.[: E(w) [1— cos(a) T *)}i 10}

{sin[(p(a),Y,T)]—sin[(p(a),Y,T)+a)T*]}da) (M

where E(w) is the frequency spectrum and
o(@,Y,T)=KY -oT, (8)
with
k tanh(k,d) =} /g . 9)

The second formulation of the QD theory [Equations (6) and (7)] shows then that the largest
wave with height H is generated by a random (two-dimensional) wave group which reaches
the apex stage of its development at (Y=0, T=0) (see Boccotti, 2000).

3. The derivation of the second-order quasi-determinism theory for random wave
groups in an undisturbed field

The quasi-determinism theory, in both the formulations, is exact to the first-order, and
satisfies the first-order Stokes equations (see Appendix A). In this paper the theory, in both
the formulations, is extended to the second-order, by solving the second-order system of
differential equations for an irrotational flow with a free surface.

The second-order solution for the ‘New wave’ (that is the first formulation of the quasi-
determinism) theory is given in Appendix B.

Here the second-order solution for the second formulation of the quasi-determinism theory is
obtained.
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Following perturbation method, the second-order velocity potential ¢ and free surface
displacement 77 are given respectively by

Sy, +Y, 2t +T) =g (y, +Y, 2,t, +T)+,(y, +Y,2,t, + T) +0(H?) (10)

(Yo +Y 4 +T) =73 (Y, +Y 1 +T) +77,(Y, +Y .4, +T) +0(H”?) (11)

being (7, 51 ) the linear and (77, , 432 ) the second-order components.

The terms (77,, (/72 ) are obtained solving the second-order system of differential equations for
an irrotational flow with a free surface, which is given by (see Appendix A):

p— — —\2 —\2
_ (o) (&%) - 1(og) 1o
R o =2 |22 =0 12
97, [aT lo [azaT e ) el (12)
_ - .
9| |24 o |0k 9 Om _ (13)
oz ) “\ezr) M\av) oy Tar
0’9, 0%,
9 O _g 14
oY? * oz° (14)
[6—"’2] 0. (15)
0z o

To solve the second-order equations, it is convenient to combine linearly Equations (12) and
(13) so to cancel out 7, term. In particular we obtain:

iaz + 6_52 —7iﬁ _71£ 6_5124,6_4312 +
oT? o g 0z z:O_ oT |\ 00T 1:0771 20T || oY o 0z o
%) 50 om

g[ 622 Jzonl ' g[ aY lo aY

where the right hand side includes linear terms only.

(16)

3.1. The second-order 7 and ¢ expressions when a large crest-to-trough wave height
occurs

The linear free surface displacement 7, , given by Eq. (6), may be rewritten in discrete form
(Yo +Y ot +T) =17, =17, =

= ZN“aI cos|gp(w,, Y ,T)]—ioxi coslp(a, Y T) + & T"] (7
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where

iE(a)i)da)i
a=—2 (18)
J.O E(a))[l—cos(a)T*)]da)

or in the equivalent form

2N
(Y +Y .t +T) =D e coslA (@, Y, T)] (19)
i=1
being
AN =& :
fori=1..,N (20)
Oy =0
LY, T for i=1...,N
Aoy )= 20T . (21)
o(w,Y,T)+oT +7x  for i=N+1,..2N.

The velocity potential may be then rewritten as

_, coshlk,(d +2)]

_ N
+Y,t,+T)= ),
A (Y, ) g%]aw ~coshlkd]

sinfp(w,,Y,T)]+

(22)
—giaa}flwsin[(p(m Y T)+a)AT*]
= coshlk,d] v '
oras
t,z?l(yo+Y,to+T)=gzaiwil%]ﬂsin[zi(wi,v.T)] (22)

with definitions of Equations (20) and (21).
The solution of Eq. (16), including (14) and (15) Equations, gives the second-order velocity
potential (for details see Longuet-Higgins, 1963 and Sharma & Dean, 1979):

- 1,88 ¢ «a, |coshlk, (d+2)] B, .
Y, z,T)==g° n _Zm nm m__sin(A —A_)+
#.(1,2T) =702, o, a){ cosh(k_d) @ —ar (4 ~4,)
(24)
+cosh[knm(d +2)] B, sin(/1n+ﬁm)
cosh(k, d) a,+a,
and, considering Equations (12) and (13), the free surface displacement is:
1 2N 2N
(Y. T)= SOIPLH [A, cos(2, — 4, )+ Ay cos(2, + 4, (25)
n=l m=1l

being 4 =A(@,Y,T),
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A:: — knkmipnpm +p +p
\pnpm

Bir

nm

_Won P 2 - 2D o (6= P 2l r 24 | (ki T )

(V2 £4/2n |~k tanh(kz,d)
Ko =1 Ky 2, |

p, =k tanh(k d) = /g .

After some algebra, Equations (24) and (25) may be rewritten respectively as:

— 1,34 cosh[k_ (d +z)] B .
Y, z,T)==g? nm m__|(1—cos(w T
202T)=70 Z;Z; o, o, { cosh(k,.d) @, o, [b-coste )+

—cos(e, T") +cos(w, T -, T ))sin((pn -p,)- (sin(a)nT*) —sin(w,T") +
]+ coshlk,.(d +z)] B,, [(Lcos(conT*) .
cosh(k,.d) o, +o,

—cos(, T )+cos(o,T" +w, T *))sin(gon +o, )+

—sin(o,T" - ,T") os(p, —
— (sin(@,T*) +sin(e, T*) = sin(e,T" + @,T") kos(e, + ¢, )]}

7Y, T)== ZZ a,a {Anm[(l cos(@,T") —cos(w,T") +cos(w,T" -, T ))

n=1 m=1
-cos(g, —(om) (sm(conT )—sin(w,T") -sin(o,T" —o,T ))sln (0, — o, )|+
+A" [(1— cos(,T") —cos(w, T )+cos(o,T" + o, T *))cos(gon +,)+
+(sin(,T*) +sin(e,T*) = sin(@,T* + o, T") sin(p, + ¢, )|
where

@1 :¢(a)1 erT) .

(26)

(@7)

(28)

(29)

(30)

31

(32)

Finally, from definition of Eq. (18), Equations (31) and (30) may be rewritten as a function of

the frequency spectrum:

7,(Y.T) :T—;{I:E(a))[l—cos(a)T*)}ia)}_z :

[ E@)E@) A [1-cos(@,T) - cos(a,T") +
cos(,T" — @, T ") os(p, — ¢, )+ sin(e,T") = sin(e,T*) =sin(,T" - ,T"))-

-sin(p, — o, )]+ A [(1— cos(@,T") —cos(w, T")+cos(w, T + a)mT*))cos(gon +o,)+

+(sin(@,T") +sin(ew,T") - sin(a,T" + o,T") sin(p, + ¢, )} da,do,

(33)
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5(Y,2,T) = ng—g{I:E(a))[lfcos(wT*)}iw}_z [ ] Ew@E (w)wimi

. coshlky, (Ej 21 By, [(1— cos(,T") —cos(e, T") +cos(w, T +
cosh(k,,d) @, -,

—0,T)in(g, - ¢, )~ sin(e,T") —sin(w,T*) —sin(@,T* - o,T") kos(p, — o, )|+ (34)

cosh[k, (d+2z)] B, . N X R
+ " m__ {1 - cos(e,T") — cos(w, T )+ cos(w,T" + a,T") kin(p, +
COSh(kn*md) o, +ao, [( (0,7) (0,T7) (o, , ))s (o,

+(pm)—(sin(a)nT*)+sin(a)mT*)—sin(a)nT* +a;mT*))cos((pn +0,)] } do,do, .

Expressions (31) and (30) [or (33) and (34)] give respectively the second-order free surface
displacements and velocity potential when a large crest-to-trough wave, with height H, occurs
at Y=0, with the crest of largest wave at T=0.

Note that the solution procedure consider the linear group of long-crested waves with the
large wave height H [given by second formulation of QD theory - Eq. (6)], as the
superposition of two groups 7,, and 7, [see Eq. (17)]. The first group 7,, has largest crest at
(Y=0,T=0), with height H_=05H/(l+y"), where " is the narrow bandedness
parameter defined as the absolute value of the quotient between absolute minimum and
absolute maximum of the autocovariance function W(0,0,T) (Boccotti, 1989, 2000). The
second group 7, have the largest crestat (Y =0,T =T"), with height H_ too (see Figure 1).
The difference between these two wave groups [7,, — 7, - see Eq. (17)] gives the linear free

surface displacements from the second formulation of the QD theory, that is a wave with both
crest and trough amplitudes equal to H/2.

For the derivation of the second-order solution, each of the two linear groups has been
decomposed in N components; the second-order solution is then obtained by considering all
the interactions among the 2N wave components.

This approach may be also applied for other applications. For example for the derivation of
the second-order wave groups in front of a vertical wall, when a very high crest occurs. This
application is given in Appendix C.

4. The non-linear wave groups in deep water
In deep water, the long-crested 7,(Y,t) and EZ(Y,z,t) expressions [Equations (33) and (34)
respectively] are slightly simplified. In particular we have

cosh[k;, (d +z)]

exp(k®z) as d , 35
cosh(k-.d) — exp(k;,2) —>®© (35)

and from Eq. (29) it follows that:
po=k,=alg. (36)

Furthermore, in deep water, Equations (26) and (27) reduce themselves to:
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A:m:7|kn7km|; A:m:kn_‘—km (37)

and

O T N 3
B: =0; B”m_(\/ﬁf\/ﬁ)z—mfkml' (38)

Finally, the second-order free surface displacement (31), which gives the second-order term
77, when a large wave height occurs, for long-crested waves in deep water, is simplified as:

m,(Y,T) :T—Gz{J:E(w)[l—COS(WT*)ha)}’Z .
7 [ E@)E@) 1K~k 1 [1-cos(e,T") ~ cos(e,T") +cos(e,T" -, T"))

cos(g, — @, )+ (Sin(@,T ") = sin(@,T") ~sin(e,T" - w,T") kin(p, — o, )|+ (39)
+ (K, +k, )[(1— cos(a,T") —cos(ew, T")+cos(w,T" + a)mT*))cos((pn +, )+
+(sin(e,T") +sin(@,T*) =sin(e,T" +o,T") Jsin(p, + ¢, o, do, .

5. The computation of second-order long-crested free surface displacements and
velocity potential

In the previous section the expressions of 77, and ¢, have been obtained if a large wave
height occurs (that is extended to the second-order the second formulation of the QD theory).
In Appendix B both 7, and ZZ have been obtained if a large crest occurs [that is extended to
the second-order the first formulation of the QD theory (New wave)].

For the computation of 7, and ¢72 it is convenient to define the nondimensional frequency
w=w/w, and the nondimensional frequency spectrum E,(w). For a JONSWAP spectrum

(Hasselmann et al, 1973), we have E(w)=a,9°®,°E, (W), where

2
E,(W)=w" exp[1.25w“‘]exp{ln VA exp{ (V;_? }} with w=w/o, (40)
4

2

being «, the Phillips parameter and o, (=27/T,) the peak frequency. Parameters y, and
%, are equal respectively to 3.3 and 0.08 for the mean JONSWAP spectrum.

The wave number may be then written as k; =k, 2z/L, [where L, = ng2 /(2r) ], where
the nondimensional wave number k,,; is obtained from equation

k,, tanh(k,, 27d /L, ) =’ (41)

In this case, Eq. (36) gives p, = WJ.Z(Zir/ L,,) and Equations (26) and (27) are rewritten as:
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A‘ﬂtm = Av::mw (27[/ LpO)

R : (42)
Bun = Bom, (277 L)
where nondimensional coefficients A, ~and B, ~are
+ B:m B kWnkwm * WnZWn21 2 2
AL, = W W (43)

Wn Wm

g O 2w )l O, — ) w (i w2, 2w, ), F0GWE)
e (w, £w, -1k, £k, |tanh(k,, £k, [27d /L) '

Finally the total second-order free surface displacement 77 (Y, T)=7,(Y,T)+7,(Y,T) may be
calculated as a function of nondimensional integrals; in particular 7,(Y,T) and 7,(Y,T) are
given respectively by:

(Y, T) :% | E.(w)cos(p)—cos(p+ fw)}:lw{[ E,(wL-cos(f, ) wfl (45a)

772(Y,T)=T—£E—Z{I:Ew(w)[l—cos(fw) w}fz.
[ [ Euw)E, (A, [L-cos(t, ) cos(f,, ) +

cos(f,, — f,. ) os(p, — ¢, )+ (sin(f, ) —sin(f, )—sin(f, —f,)) (45b)
-sin(p, — @, )|+ As, [(1— cos(f,, ) —cos(f, )+cos(f, +f, )):OS((pn +o, )+
+(sin(fwn)+sin(me) —sin(f, + me))sin(gon + ¢, )|idw, dw,

where f, = 22w, TIT, and ¢, =k, 27Y [ L, —w,; 24T IT, [see Eq. (8)].

6. Applications: The highest sea wave groups in time domain
6.1. The second-order wave groups when a large crest-to-trough wave height occurs

The quasi-determinism theory gives the linear free surface displacement and velocity potential
when a large crest-to-trough wave height occurs. Figure 1 shows the linear wave group 7, , at

point (Y =0) when a large wave of height H occurs, for a mean JONSWAP spectrum. Figure
1 shows also the two groups 7,, and 7, in which is decomposed 7, (=7, —7, ). Note that

both 7,, and 7, have largest crest with amplitude H_=0.29H , being for mean JONSWAP
spectrum " =0.73 [note that H, =0.5H /(L+y ") ].

Figure 2 shows then the second-order effects. In particular, if the wave with height H occurs
at Y=0,with H/o — o, it shows the time domain linear wave group 7,, the second-order

term 7, and the total second-order free surface displacements 77 =7, +7, , at point Y =0. It
is assumed the mean JONSWAP spectrum in deep water.
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7/ H

AL
=U.o

Figure 1. The linear wave group 7, when a large wave of height H occurs at (Y =0) and the
two groups 7,, and 7, in which is decomposed 7, (=7, -1, )-

n o
=U.0

Figure 2. Let us assume that a wave with height H occurs at (Y =0), with H/o — o : the
linear wave group 7,, the second-order term 7, and the total second-order free surface

displacements 77 =17, +7, . The spectrum is the mean JONSWAP and the water is deep.

Finally Figure 3 shows a particular of Figure 2. The effects of second-order, for the highest
wave, increased the crest height by 16% (it is equal to 0.58H), and decreased the trough depth
by 16% (the trough amplitude is equal to 0.42H).

As for the period Ty, of highest wave, from linear QD theory we obtain that it is slightly
smaller than T, (Boccotti, 2000). For example, for the mean JONSWAP spectrum T,=0.92T,,.
As we can see the second-order effects do not modify T,. A slightly difference may be
appreciated for the crest and trough duration’s, which are respectively equal to 0.43T, and
0.49T,, (from the linear QD theory they are both equal to 0.46T).
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Figure 3. Particular of figure 2: the linear 7, and the total
second-order free surface displacements 7 =7, +7, .

6.2. The second-order wave groups when a high crest occurs (‘New wave’)

.1 The undisturbed wave field

Let us suppose that a large crest of height Hc occursat Y =0, T =0, in an undisturbed wave
field. Following the first formulation of the quasi-determinism theory (‘New wave’) we have
that a random wave group, at the apex of its development, generates this wave. To the second-
order in the Stokes expansion, the wave group when a large crest occurs is given by Eq.
(B10).

The first and second-order wave group, at point Y=0, is shown in Figure 4a.

.2 The wave field in front of the vertical wall

The wave group in front of a vertical wall, when a large wave occurs, is obtained in Appendix
C. Therefore, if a large crest of height Hc occurs at wall (Y =0), attime T =0, the second-
order free surface displacements is given by Eq. (C18). Both first and second-order free
surface displacements are given in Figure 4b.

The comparison between Figures 4a and 4b (both are obtained for the mean JONSWAP
spectrum) shows that non-linear effects at a vertical wall are greater than in an undisturbed
field. For example the second-order highest crest is equal to 1.11Hc in an undisturbed field
and to 1.26H: on the vertical wall.

Finally we have that, in time domain, both non-linear wave groups are symmetric with respect
to Y-axis.

6.3. Comparison with data

To validate our analytical predictions, Monte Carlo simulations of second-order sea states
with the mean JONSWAP spectrum have been carried out, by generating 40000 waves. The
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data have been then processed to analyze the structure of time domain wave groups, if either a
large crest height (section 6.3.1), or a large crest-to-trough wave height, occurs (section
6.3.2).

The wave groups with a large crest, in time domain, have been also compared with average
wave time histories given by Taylor and Williams (2002).

6.3.1 The largest crest heights from numerical simulation and field data

Figure 5 shows the highest crest obtained processing data of numerical simulation: the crest
amplitude C is equal to 1.32 times the significant wave height; the crest duration is equal to
Atc=0.40T,. Troughs, front and back the highest crest, have amplitudes 0.54C and 0.68C and
duration 1.34 Atc and 1.27 Atc respectively. Linear profile is given by broken line (it is easily
obtained from numerical simulation, by considering the 7, term only).

7IH ¢

=

I T A . W

P
3

T T v/ | X
157 -1 05 /o 0 \ 05 1 45
— - N
-1
] TIT,
15
mH ¢ 7 (b)

\..\\\\\\\\\\\

1
3\
1
=
|
1
o
ol
<IN
A <~}
HHMHMC\\
Z
@)
=
(6]

H
a

Figure 4. Let us assume that a crest of height Hc occurs at (Y =0), with H. /o — o : the
linear wave group 7, , the second-order term 7, and the total second-order free surface
displacements 77 =7, +177, . The spectrum is the mean JONSWAP and the water is deep.
Upper panel: the undisturbed wave field. Lower panel: the wave group at a vertical wall.
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(@) C=6.6m (H;=5m;T,=9.5s)

trore

0~

-1 i

233.3 2338 2343 234.8 235.3 235.8
(b) Analytical prediction, at point Y*=0.06L

1

17, 1ic

Figure 5. Comparison between largest crest obtained from Monte Carlo simulation of 40000
non-linear waves with mean JONSWAP spectrum, and analytical prediction. Upper panel
shows the numerical data: dotted line gives the linear free surface displacement and
continuous line gives the second-order one. Lower panel gives the theoretical prediction
n(Y',T) obtained from Eg. (B10), at point Y'/L , =0.06 .

Theoretical prediction, given in lower panel, is obtained from Equations (B3) and (B10). In
particular, because the 7(t) profile of Figure 5 is non-symmetric, the 77 (Y',T) is calculated
at fixed points Y' close to 0. The value of Y' is obtained with an iterative procedure: we
choose the value Y =Y"' which maximizes the coefficient of correlation between time series
n(t) of upper panel and 7 (Y,T) [let us note that a time shift is included to have largest
crests of n(t) and 7 (Y,T) at equal time instant]. As we can see theoretical 77 (Y',T) profile
of Fig. 5b well agree with data.

Theoretical linear profile, obtained from quasi-determinism theory [Eq. (B3)], is given by
broken line.

Finally theoretical prediction is compared with the average wave time histories when a high
wave crest (or a deep trough — see Note) occurs, obtained by Taylor and Williams (2002) by
processing field data with significant wave height H,=4m, from WACSIS dataset

(Forristall et al, 2002).

The use of the average profile in time domain is useful because the individual actual waves
are both irregular and non-linear. Figure 6 shows then the average shape of the largest crest,
which was obtained by considering the surface displacement time series around the 10% of
largest crest (Taylor and Williams, 2002). Each crest was time shifted, so to have the
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maximum value of free surface displacement at time T=0. Figure 6 shows also the average
shape of largest troughs (see Note), which are taken positive. The peak period, for a Pierson-
Moskowitz spectrum, is calculated as (Boccotti, 2000):

T,=47zfH, /g . (40)

In detail, from the average shape of the largest crest we obtain that: the largest crest has
amplitude C and duration equal to Atc=3.4s; troughs, front and back the highest crest, have
amplitudes 0.46C and 0.49C and duration 1.42 Atc and 1.49 Atc respectively. From the
average shape of the largest trough we obtain that: the largest trough has amplitude 0.78C and
duration equal to 1.15Atc; crests, front and back the largest trough, have amplitudes 0.54C
and 0.52C and duration 1.27 Atc and 1.28 Atc respectively.

In the lower panel we find our analytical prediction for the Pierson-Moskowitz spectrum: the
deterministic wave profiles 77 =7, +7, when a large crest occurs and -7 =7, —77, (see Note)

when a large trough occurs are plotted.
In detail, from 7 non-linear theoretical profile (crest) we obtain that the largest crest has

amplitude C and duration Atc’=0.36T,; the front/back trough has amplitude 0.54C and
duration equal to 1.40 Atc’. From 77" non-linear theoretical profile (trough) we obtain that the

largest trough has amplitude 0.78C and duration 1.26Atc’; the front/back crest has amplitude
0.66C and duration equal to 1.27 Atc’.

We find then a good agreement between data and analytical prediction, both for the crest and
the trough profiles: the crests are taller and spikier, and the troughs are smaller and broader.

7. Applications: The highest sea wave groups in space domain

The quasi-determinism theory, in both the formulations, enables us to obtain both the free
surface displacement and velocity potential in space-time domain. In section 6 the wave
groups with large waves have been analyzed in time domain, at a fixed point. Here we
consider the wave groups in space domain, at fixed time instant.

In all the applications have been assumed the mean JONSWAP spectrum and the water deep.

7.1. The second-order wave groups when a large crest-to-trough wave height occurs

Figure 9 shows the non-linear wave group in space domain, when a large crest-to-trough wave
height occurs, at some fixed time instant. The highest wave occurs at T=0, at the apex stage of
group development. As we can see, a well-defined wave group moves along the y-axis. The
wave group (individual wave) propagation speed is nearly equal to the group (wave) celerity
for a periodic wave with period equal to the peak period Tp; in deep water, group celerity is
then equal to one half the wave celerity. Because propagation speed for individual waves is
greater than propagation speed of the wave group, each wave ‘runs along the envelope from
the tail where it is born to the head where it dies’ (Boccotti, 2000).

The wave group shows also firstly a development stage, during which the height of the largest
wave (at that fixed instant) increases; therefore at time t, we have the apex of the group
development: at this time the wave crest at point x, reaches its maximum. After t, we have the
group decay stage.
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All these results on the space time evolution of non-linear wave groups are in full agreement
to those of Boccotti’s book (2000), from the first-order quasi-determinism theory.

As for the second-order effects, they increase the crest amplitude and decrease the trough
amplitude.

7.2. The space-domain second-order wave groups in front of a vertical wall, when a
large crest occurs

Figure 10 shows the non-linear wave group in space domain, when a large crest of height Hc
occurs at a vertical wall. The highest crest occurs at T=0, on the wall (Y=0).

WACSIS field data (Taylor & Williams, 2002)

1.0 "
crest profile
0.5- trough profile
0 t[s]
-10 5 0 10 20
-0.5-
1 05 0 05 1 tiT,
Analytical prediction [Egs. (B3) and (B10)]
1 - -
crest nonlinear profile
trough nonlinear profile
05 - g p
0 w ,
-1 1
-0.5 4
-1
t/T D

time

Figure 6. Upper panel: the average shape of the 10% of largest crest and trough
amplitudes from WACSIS dataset (from Taylor and Williams, 2002).
Lower panel: analytical prediction for the Pierson-Moskowitz spectrum
[Egs. (B3) and (B10)]; in particular we have the deterministic wave profiles 77 =7, +7, when

a large crest occurs and —7'=7, —77, when a large trough occurs.
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Figure 7. The average shape of the 1% of largest crest amplitudes, from second-order

numerical simulation of 40000 waves. Dotted line gives the average linear free surface

displacement (obtained processing only linear component from numerical simulation).
Continuous line gives the average second-order free surface displacement.

TIT

FaWal
-U.0

Figure 8. The average shape of the 1% of largest crest-to-trough wave height, from second-
order numerical simulation of 40000 waves. Dotted line gives the average linear free surface
displacement (obtained processing only linear component from numerical simulation).
Continuous line gives the average second-order free surface displacement.

Note that in front of the vertical wall we have standing waves, as we may appreciate from
Figure 11, which shows the non-linear free surface displacement at fixed time instant (T-
to)/Tp, between —1 and 0, when largest crest occurs at wall (Y=0) at time instant t,].

In particular Figure 11 may be compared with Figure 12, which shows the same wave group
[that is the non-linear free surface displacement at fixed time instant (T-t,)/T,, between -1 and
0] in an undisturbed field, when a large crest occurs at Y=0, T=t,.
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Figure 9. The second-order free surface displacements in space domain
(in an undisturbed field), at some fixed time instant,
when a very large crest-to-trough wave with height H occurs at (Y=0, T=t,).
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APPENDIX A.
THE SYSTEM OF DIFFERENTIAL EQUATIONS
FOR AN IRROTATIONAL FLOW WITH A FREE SURFACE

Let us consider an irrotational flow with a free surface, at a constant depth d. Let the vertical
free surface displacement be 7(x,y,t), and the velocity potential ¢#(X,y,z,t) where the
vertical z axis, positive upwards, has origin at the mean water level and (x,y) denote the
horizontal plane in Cartesian co-ordinates.
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Both the velocity potential ¢ and the free surface displacement 7 have to satisfy the system

of differential equations, for the irrotational flow with a free surface. This system includes:
i) the Bernoulli equation

Y 1(ag) (09| _
gn+[EJZ”+E[[EJ +(E] :l =0 (Al)

i) the free surface general equation

(%] _(0¢) om, on (A2)
0z),, \%)_ 0y ¢t

iii) the continuity equation

o’y 0’ 0%
pw + Y + P =0 (A3)

iv) the solid boundary condition at the horizontal bottom

9 _
( = Jd =0. (A4)

To solve the first two equations, a Taylor series expansion is usually taken at z=0 (mean water
level) (Longuet-Higgins, 1963). For example, the second term in Eq. (Al) gives:

o) (o) L[(2¢) ,, 136
[ ot 1_,7 7( ot 1_0 +(826t1_077+ 2 (6226t JZ_OU teen (AS5)

Furthermore perturbation method may be applied, to obtain the solution: the free surface
displacement and the velocity potential are written as

n=m+n,+0(H?), ¢=¢+¢,+0(H?) (A6)

(where o( H?) define terms of order smaller than H?, and 7, and ¢ have order H').

Finally, from Equation (A1-A4) we may derive the linear and the second-order system.
To the first-order, the system (A1-A4) gives:

2 2 2
[%j :_g“(%J :%;%ﬁ‘fﬂ%:“[%] 0. (A
ot )., oz ), ot ox° oy oz 0z ),_,

The second-order system, particularized for long-crested waves (two-dimensional) is given by
Equations (12-15); note that it is given as a function of the independent variables Y,z,T,

which are defined as Y =y-y, (direction of wave propagation), T =t—t,, with y, an
arbitrary point and t, an arbitrary time instant.
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APPENDIX B.
WHAT HAPPENS WHEN A LARGE CREST HEIGHT
OCCURS: THE LINEAR QUASI-DETERMINISM THEORY AND
THE EXTENSION TO THE SECOND-ORDER

B.1 THE FIRST FORMULATION OF THE QUASI-DETERMINISM THEORY

The first formulation of the quasi-determinism theory by Boccotti (1981, 1982, 2000), for
linear high wave crest (‘New wave’), enables us to predict the space-time evolution of the free
surface displacement and of the velocity potential when a very high crest occurs at some fixed
time and location.

The theory shows that, if a local wave maximum of given elevation Hc occurs at time t, ata
fixed point (x,, Y, ), and if H./o - (o being the standard deviation of the free surface

displacement), with probability approaching 1 the surface displacement at point
(x,+X,y,+Y ) and the velocity potential at point (x,+ X,y,+Y ,z), at time t +T, are

respectively equal to the deterministic form

= Y(X,Y,T)
X+ X, Y, +Y 4Ty =y B1
771( <] yo ) lP(O’Olo) C ( )
- D(X,Y,z2,T)
X+ X, ¥, +Y,2,t, +T)=——F——FH_, B2
¢1( 0 yo 0 ) ‘{‘(0,0,0) C ( )

where the space-time covariances W (X,Y,T) and ®(X,Y,z,T) are defined by Equations (4)
and (5).

Let us note that both the expressions (B1) and (B2) are exact for H. /o — o, that is for the
crest height very large with respect to the mean crest height.

B1.1) The linear deterministic wave group for long-crested waves in an undisturbed field
For long-crested waves in an undisturbed wave field the free surface displacement [see
Eqg. (B1)] of the wave group at point y,+Y attime t,+T , when an exceptional crest height

of given elevation Hc occurs at time t, at fixed point y, , may be rewritten as a function of
the frequency spectrum E(w) :

S J':E(a))cosqoda) &)
T e ["E@Mo

The velocity potential at a fixed point (y, +Y, z), when the very large crest occurs at point
Y, , is then given by:
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® 1 cosh[k(d +2)] ..
jo E(w)gwsm(pdw

$(Y, +Y,2,t,+T) = gH, e
jo E(o)do

(B4)

where the wave number k is obtained from equation k tanh(kd) = »?/ g .

B.2 THE SECOND-ORDER 77 AND ¢7 EXPRESSIONS WHEN A LARGE CREST
OCCURS

The second-order 77 and ¢ , when a large crest occurs, are easily obtained: in this case the
linear free surface displacement 7, [Eq. (B1)] and velocity potential 4 [Eq. (B2)] give a
wave group, with largest crest with amplitude H. at (Y=0,T=0). Therefore they may be
rewritten in discrete form as a summation of N terms:

(Y, +Y,t,+T) :ZN:a; cos|p(e,, Y, T)] (B5)

i=1

Ao+t 4 T) =g ma = rsinlp(a, Y. T)] (86)

where

H E(w)do,

e : (B7)
L E(w)do

By solving the second-order system given by Equations (12-15), following procedure given
by Sharma & Dean (1979), we obtain:

N N

YT =523 @ (A,00s(p, ~0,)+ Aucos(e, +0, ) (88)

n=1 m=1

[y

AT -y am{cosh[knm(dﬂ)] B, sin(p, — . )+

n=1 m=1 a)n a)m COSh(krde) a)n _a)m

(B9)
coshfk,, (4 +2)] By . . )}
cosh(k, d) @, +ao,
or, as a function of the frequency spectrum:
HZ - -2 - -
m(v,t):TC{jo E(w)da;} [" [ E@) 810)

. E(wm){Av:mCOS(gon - (pm )+ chos(wn + gﬂm )}j a)mda)n
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az(v,z,T)=gZ%{[:E(w)dw}2 [ ] E@E@)
11 {cosh[knm(d +2)] B,

cosh(k,,d) @,—-o,

n m

sin(p, - @, )+ (B11)
a)n a)m

N cosh[k,.(d+2)] B,
cosh(k,.d) @, +,

sin((pn + ¢, )}da)mdwn.

The second-order free surface displacement and velocity potential, when the large crest of
amplitude H, occurs, are then 7 =7, +7, and ¢ = ¢, + ¢, respectively.
Note that expressions (B10) and (B11), for the special case of long-crested waves in deep

water (see section 4), were derived by Arena & Fedele (2003) and Fedele & Arena (2003)
with a different approach.

APPENDIX C.
REFLECTION OF NON-LINEAR WAVE GROUPS: THE EXTENSION TO THE
SECOND-ORDER OF THE QUASI-DETERMINISM THEORY

The reflection deals with the interaction of waves with a vertical wall.

Here the reflection of long-crested waves is considered; in particular we analyze what
happens when a large crest height occurs on a vertical wall. The linear analytical solution for
the quasi-determinism theory (‘New wave’), for waves on a vertical wall (Boccotti, 1989,
2000), is then extended to the second-order.

Let the linear incident free surface displacement 7, and velocity potential q?ii be given

by Equations (B10) and (B11) respectively.
In front of the vertical wall we have the reflected waves, such to satisfy the boundary
condition at the wall. Being the wall located at Y =0, this condition yields:

o)
(aY ]YO B 0 ‘ (Cl)

where the total linear velocity potential is given by ¢ =g, +4, , with ¢_ the reflected term.
In detail, the reflected random waves which satisfy the condition (C1) are derived by
considering that the jth component of incident wave, has amplitude a}, frequency o; and

direction 8, =0 (V] , because we have long crested waves), where we now define
0'(0,0,Y,T)=kY cosd—aT , (C2)

in place of ¢(w,Y,T).
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We find that (see Boccotti, 2000) the corresponding jth reflected wave component has
amplitude oz,'j =a;, frequency o,; = w; and direction 6, =7 .
Therefore the reflected waves are given by

N
T (Yo +Y,1, +T) =Y ) cosl! (@,,6,,,Y,T)). (C3)

=1

The total linear free surface displacement in front of the vertical wall, which is defined

as
T (Yo +Y o +T) =0, +77,, (C4)
is then
2N
ﬁlR(y0+Y,t0+T)=JZ;a'j cos[ga'(a)jﬁj,Y,T)] (C5)
where
0{; = 6{
w; = a) .
0‘20 for j=1..,N (C6)
On=7
) The corresponding total velocity potential, to the first-order, in front of a vertical wall is
then:

2N cosh[k d+z)

(Yo +Y 1, +T) = gz oo ) sin[go'(wJ,QJ,Y,T)] (C7)

with definitions (C2) and (C6).
Note that Equations (C5) gives the wave group when a large crest height, of amplitude 2Hc,
occurs at a point close to (or on) the vertical wall.

The second-order 7,, and ¢,, are then obtained following the procedure solution of section
3. In this case we have a slightly different structure of A} and B, coefficients. In detail,

. and ¢, , for long-crested waves, are given respectively by:

12N 2N . " , ,
e (Y,T) =2 a,a [AnmCOSgo —p' )+ AnmC05(¢n+(/’m)] (C8)

n=l m=1

Sin((p'nf(p'm)+

7 2T)= A 4 g {cosh[k (d+2)] B,

1 m
47 HE o, e, cosh(k,,d) o,-a,

coshfk; (d+2z)] BT, ., .,
T oosh(k'd) @ +o sinp'y+')

m

(C9)

where
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E +
A~ Bk Kooy (C10)

P o R e BN Y pm>]+2(\/p_n 8 (R TN R
" o, +p.) -k, tanh(i, o)

k= =k +k_|. (C12)

nm

Note that either for (n=1..N,m=1..,M) or for (n=N+1....2N,m=M +1,....2M) we
have Kk -k =kk and |k +k |5k +k |. We have instead k -k, =—kk, and
|k, +k |k, Fk,| ifeither (n=1..N,m=M +1...2M) or (n=N+1,...2N,m=1,...,M).
Therefore we may write:

(n=1..N,m=1..,M)

(A, B, either for
orfor(n=N+1...,2N,m=M +1,...,2M)

(A% B) = (C13)
~ =, . (n=1..N,m=M +1...,2M)
(A, B.,) eitherfor
orfor(n=N+1...,.2N,m=1,...,M)
being
A - Bun KoKy £ 200, ip 4o (C14)

VPP

5. _ oot phs o pm>]+z(JpT AICTSTVS R
" (\/p_n \/E)2 k> tanh k*

After some algebra, the free surface displacements 7, is given by:

T (Y T) = 21:2 [ Acos(kY —k.Y)+ A cosk,Y +k.V)] 10

-cos(,T —w,T )+ [chos(knY +k,Y)+ A’ cos(k Y — ka)]cos(conT +o,T )}

or, as a function of the frequency spectrum:

(Y. T) = Hzg “0” E(a))da)}iz [ E(w,)E(a,){[Ancos(k,Y —k,Y)+
A cosk,Y +k,Y)|oos(.T —,T )+ [Acos(k.Y +K,Y) + (€17)
A’ cos(k,Y —k Y )]cos(aznT +o,T )}mmda)n

The amplitude of linear highest wave at wall, given by Eq. (C5), is equal to 2H¢; Eq. (C17)
gives then the second-order free surface displacement when the largest crest of amplitude
equal to 2H¢ occurs.
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Furthermore, if we have that a large crest height of amplitude Hc occurs at a fixed point Y in
front of the wall, at time T=0, the total second-order free surface displacements 7,

(=77, +177, ) is given by:

(Y. T)= HC{ j: E(a;)dw}’1 j: E (w)cos(wT )cos(kY )da +

+H?é{ [ @y w}fz [ ] E@)E@,){[Ancosk,Y ~k,Y)+ (C18)
A cos(k,Y +k,Y)|oos(,T — T )+ [Ar cos(k,Y +k,Y)+

A cos(k Y — ka)]cos(wnT +o,T )}:i o do,
and the corresponding total second-order velocity potential ¢, (=g, +d,, ) is

_; coshlk(d +2)]

¢_5R(Y,2,T)=*9Hc{‘[: E(w)dw}l .[: E(o)o cosh(kd)

sin(wT )cos(kY )dw +

HE [ IO e

—97{[0 E(w)dw} [7 [ E@)E@,)0ialc,cosk,Y —k,Y)+ (C19)
Cacos(k,Y +k,Y)|sin(e,T - w,T )+ 2[C;, cos(k.Y +k,Y) +

C. cos(k,Y —k Y )]sin(wnT +o T )}dwmdwn

where
C B 1 cosh[k,—k,|(d+2)]. & -8 1 cosh[|k,+k,|(d+2)].
™ "™ -w, cosh(k, -k, [d) ™ Ma,-w, cosh(k, +k, |d) (C20)
C' B 1 cosh[|k, +k,|(d+2)] ; éfm _ |§; 1 cosh[k, -k, |(d+2)] .

"o, +w, cosh(k, +k, |d) " @, +w, cosh(k, -k, |d)

Note that this second-order extension is exact if the large crest occurs on the vertical wall, that
is if yo=0. In this case Yaxis coincides with yaxis. The general solution, which is valid for the
largest waves occurring at any fixed point in front of the wall, may be derived with a similar
procedure.



NON LINEAR HIGHEST SEA WAVE GROUPS...

Nomenclature
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frequency spectrum
nondimensional frequency spectrum
acceleration of gravity

crest-to-trough wave height
crest amplitude

significant wave height
wave number

wavelength

period of highest waves
peak period

time

fixed time instant
nondimensional frequency
horizontal coordinate axis
fixed point of the x-axis

horizontal axis with origin at point x,
horizontal coordinate axis

fixed point of the y-axis

horizontal axis with origin at point y,
vertical coordinate axis, with the
origin at the mean water level
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SIS
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wave amplitude
Phillips’s parameter
surface displacement

surface displacement of deterministic
wave groups

water density

r.m.s. surface displacement of a sea
state

velocity potential

velocity potential of deterministic
wave groups

covariance of surface displacement
and velocity potential

shape parameters of the JONSWAP
spectrum

narrow bandedness parameter
covariance of surface displacement
angle between wave direction and y
axis

angular frequency

peak frequency
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