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ABSTRACT. In this paper some non-linear effects for the mechanics of sea wave groups 
with large waves are investigated, either for waves in an undisturbed field or for waves 
in front of a vertical wall. 
To the first-order in a Stokes expansion, Boccotti’s quasi-determinism theory enables us 
to foresee the mechanics of wave groups, either in undisturbed or in diffracted fields, 
when a large wave occurs. The first formulation of this theory shows the random group 
mechanics when a large crest height occurs (‘New wave’); the second theory 
formulation gives the random group mechanics when a large crest-to-trough wave 
height occurs. 
The quasi-determinism theory in both formulations, for undisturbed fields, was 
extended recently to the second-order by the author. In this paper the procedure to 
derive the second-order solution is analyzed and is applied to random wave groups in 
front of a vertical wall. The non-linear effects are then investigated in space-time 
domain, and it is obtained a good agreement of analytical predictions with both field 
data and data from numerical simulation.  

 
 
1. Introduction 
 
The study of non-linear sea waves is a topic of interest for the comprehension of freak waves, 
which occur in the ocean, damaging ships and sea structures. 
For the explanation of the occurrence of freak waves an easy way is to consider a strong 
current, opposite to the wave direction, which amplify the wave generating large waves. 
Really, most of the freak waves were recorded without any current, so that different 
approaches have to be considered [see, for example, Slunyaev et al. (2002)]. 
 
Here the mechanics of sea wave groups, to the first-order in a Stokes expansion, is firstly 
investigated applying the quasi-determinism (QD) theory (Boccotti, 1981, 1989, 1997, 2000). 
This theory, which enables us to predict the linear free surface displacement and velocity 
potential when a large wave occurs in a fixed time and location, may be applied either for 
waves in an undisturbed field or in the presence of a structure (see Boccotti, 2000 for a 
complete review). A verification was found during some small scale field experiments, both 
for progressive waves (Boccotti et al., 1993a) and for waves interacting with structures 
(Boccotti 1995, 1996, Boccotti et al., 1993b).   

Phillips et al. (1993a, 1993b), proposed also an alternative approach for the derivation of 
the quasi-determinism theory and found a further field verification in the Atlantic Ocean. 
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The QD theory was given in two formulation: the first one (Boccotti, 1981, 1982) enables us 
to predict what happens in the space-time domain when a large crest occurs [the theory, in its 
first formulation and for time domain, was renamed as ‘New wave’ by Tromans et al. (1991)]; 
the second formulation enables us to predict what happens in the space-time domain when a 
large crest-to-trough wave height occurs. 
In this paper the QD theory, in both the formulations, is extended to the second-order both for 
waves in an undisturbed field (see also Arena, 2005) and in front of a vertical wall (wave 
reflection). This result is obtained by solving the second-order system of differential 
equations governing an irrotational flow with a free surface. 
The results for the second-order ‘New wave’ theory in an undisturbed field (that is the first 
formulation of the QD theory, for the highest wave crest), particularized for deep water, are 
identical to those derived by Fedele & Arena (2003) with a different approach (see also Arena 
& Fedele, 2005; Fedele & Arena, 2005).  
 
Finally the analytical predictions, for waves in an undisturbed field, are compared with data of 
Montecarlo simulation of non-linear random waves and with field data given by Taylor and 
Williams (2002) from WACSIS dataset (Forristall et al, 2002).  
 
 
2. The quasi-determinism theory 
 
Boccotti developed the quasi-determinism (QD) theory, which is exact to the first-order in a 
Stokes expansion, in eighties, in two formulations.  
The first formulation (‘New wave’) deals with the crest height, and shows that the space-time 
profile of highest crest is proportional to the autocovariance function (see Appendix B). 
The second formulation of the theory deals with the crest-to-trough height; it was derived by 
obtaining firstly the probability density function of the surface displacement at point 

YyXx oo ++ , , at time , given the condition  Tto +

 HTtyxHtyx oooooo 2
1),,(,

2
1),,( * −=+= ηη  (1) 

where  is an arbitrary time instant,  an arbitrary point, H the crest-to-trough wave 

height and 
ot ),( oo yx

*T  the abscissa of the absolute minimum of the autocovariance function (which is 
assumed to be also the first local minimum of this function on the positive domain: this 
condition is always verified for wind waves).  
The theory shows then that, as ∞→σH , condition (1) becomes both sufficient and 
necessary for the occurrence of a wave of given height H (for the formal derivation see 
Boccotti, 1989, 1997, 2000). Therefore, as ∞→σH , the linear random function 

),,(1 TtYyXx ooo +++η  tends asymptotically to the deterministic function  
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−Ψ−Ψ
=+++η . (2) 

In words we have that “if a wave with a given height H occurs at a fixed point  and H 
is very large with respect to the mean wave height at this point, we may expect the water 
surface near  to be very close to the deterministic form (2)”. 

),( oo yx

),( oo yx
The linear velocity potential, when the large wave of height H occurs, is given by  
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Note that in Equations (2) and (3) ,,YX z  and T are the independent variables.  
The space-time covariances ),,( TYXΨ  and  are defined respectively as  ),,,( TzYXΦ

 >+++<≡Ψ ),,(),,(),,( TtYyXxtyxTYX oooo ηη , (4) 

 >+++<≡Φ ),,,(),,(),,,( TtzYyXxtyxTzYX oooo φη . (5) 

Both free surface displacements (2) and velocity potential (3) may be rewritten as a function 
of the directional spectrum, for the more general condition of three-dimensional waves.  
For long-crested random waves, in an undisturbed field, we have (Boccotti, 1989, 2000):   
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where E(ω) is the frequency spectrum and   

 TYkTY jjj ωωϕ −≡),,( , (8) 

with  

 . (9) gdkk jjj /)tanh( 2ω=

The second formulation of the QD theory [Equations (6) and (7)] shows then that the largest 
wave with height H is generated by a random (two-dimensional) wave group which reaches 
the apex stage of its development at (Y=0, T=0) (see Boccotti, 2000). 
 
 
3. The derivation of the second-order quasi-determinism theory for random wave 

groups in an undisturbed field 
 
The quasi-determinism theory, in both the formulations, is exact to the first-order, and 
satisfies the first-order Stokes equations (see Appendix A). In this paper the theory, in both 
the formulations, is extended to the second-order, by solving the second-order system of 
differential equations for an irrotational flow with a free surface.  
The second-order solution for the ‘New wave’ (that is the first formulation of the quasi-
determinism) theory is given in Appendix B.  
Here the second-order solution for the second formulation of the quasi-determinism theory is 
obtained.  
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Following perturbation method, the second-order velocity potential φ  and free surface 
displacement η  are given respectively by 

 )(),,(),,(),,( 2
21 HoTtzYyTtzYyTtzYy oooooo ++++++=++ φφφ  (10) 

 )(),(),(),( 2
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being ( 1η , 1φ ) the linear and ( 2η , 2φ ) the second-order components.  

The terms ( 2η , 2φ ) are obtained solving the second-order system of differential equations for 
an irrotational flow with a free surface, which is given by (see Appendix A):  
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To solve the second-order equations, it is convenient to combine linearly Equations (12) and 
(13) so to cancel out 2η  term. In particular we obtain:  
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where the right hand side includes linear terms only. 
 
 
3.1.   The second-order η  and φ  expressions when a large crest-to-trough wave height 

occurs  
 
The linear free surface displacement 1η , given by Eq. (6), may be rewritten in discrete form  
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or as  
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with definitions of Equations (20) and (21). 
The solution of Eq. (16), including (14) and (15) Equations, gives the second-order velocity 
potential (for details see Longuet-Higgins, 1963 and Sharma & Dean, 1979): 
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and, considering Equations (12) and (13), the free surface displacement is:  
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After some algebra, Equations (24) and (25) may be rewritten respectively as:  
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where  
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Finally, from definition of Eq. (18), Equations (31) and (30) may be rewritten as a function of 
the frequency spectrum: 
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Expressions (31) and (30) [or (33) and (34)] give respectively the second-order free surface 
displacements and velocity potential when a large crest-to-trough wave, with height H, occurs 
at Y=0, with the crest of largest wave at T=0.  
Note that the solution procedure consider the linear group of long-crested waves with the 
large wave height H [given by second formulation of QD theory - Eq. (6)], as the 
superposition of two groups a1η  and b1η  [see Eq. (17)]. The first group a1η  has largest crest at 

( ), with height , where  is the narrow bandedness 
parameter defined as the absolute value of the quotient between absolute minimum and 
absolute maximum of the autocovariance function 

0,0 == TY )1/(5.0 *ψ+= HHc
*ψ

),0,0( TΨ  (Boccotti, 1989, 2000). The 
second group b1η  have the largest crest at ( ), with height  too (see Figure 1). 
The difference between these two wave groups [

*,0 TTY == cH
−a1η b1η  - see Eq. (17)] gives the linear free 

surface displacements from the second formulation of the QD theory, that is a wave with both 
crest and trough amplitudes equal to H/2.  
 
For the derivation of the second-order solution, each of the two linear groups has been 
decomposed in N components; the second-order solution is then obtained by considering all 
the interactions among the 2N wave components.  
This approach may be also applied for other applications. For example for the derivation of 
the second-order wave groups in front of a vertical wall, when a very high crest occurs. This 
application is given in Appendix C. 
 
 
4. The non-linear wave groups in deep water   
 
In deep water, the long-crested ),(2 tYη  and ),,(2 tzYφ  expressions [Equations (33) and (34) 
respectively] are slightly simplified. In particular we have  
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Furthermore, in deep water, Equations (26) and (27) reduce themselves to: 
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Finally, the second-order free surface displacement (31), which gives the second-order term 
2η  when a large wave height occurs, for long-crested waves in deep water, is simplified as:  
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5. The computation of second-order long-crested free surface displacements and 

velocity potential 
 

In the previous section the expressions of 2η  and 2φ  have been obtained if a large wave 
height occurs (that is extended to the second-order the second formulation of the QD theory). 
In Appendix B both 2η  and 2φ  have been obtained if a large crest occurs [that is extended to 
the second-order the first formulation of the QD theory (New wave)].  
For the computation of 2η  and 2φ  it is convenient to define the nondimensional frequency 
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(Hasselmann et al, 1973), we have , where  
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being Pα  the Phillips parameter and )/2( pp Tπω ≡  the peak frequency. Parameters 1χ  and 
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In this case, Eq. (36) gives  and Equations (26) and (27) are rewritten as: )/2( 0
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Finally the total second-order free surface displacement ),(),(),( 21 TYTYTY ηηη +=  may be 
calculated as a function of nondimensional integrals; in particular ),(1 TYη  and ),(2 TYη  are 
given respectively by:  

 [ ] ( )[ ]{ }1

001 dcos1)(d)cos()cos()(
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∫∫ −+−= wfwEwfwEHTY wwww ϕϕη  (45a) 
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 (45b) 

where  and pjjw TTwf /2 *π≡ pjpjwj TTwLYk /2/2 0 ππϕ −≡  [see Eq. (8)]. 

 
 
6.  Applications: The highest sea wave groups in time domain  
 
 6.1. The second-order wave groups when a large crest-to-trough wave height occurs 
 
The quasi-determinism theory gives the linear free surface displacement and velocity potential 
when a large crest-to-trough wave height occurs. Figure 1 shows the linear wave group 1η , at 
point ( ) when a large wave of height H occurs, for a mean JONSWAP spectrum. Figure 
1 shows also the two groups 

0=Y
a1η  and b1η  in which is decomposed 1η  ( ba 11 ηη −≡ ). Note that 

both a1η  and b1η  have largest crest with amplitude HHc 29.0= , being for mean JONSWAP 

spectrum  [note that ]. 73.0* =ψ )1/(5.0 *ψ+≡ HHc

Figure 2 shows then the second-order effects. In particular, if the wave with height H occurs 
at , with 0=Y ∞→σ/H , it shows the time domain linear wave group 1η , the second-order 
term 2η  and the total second-order free surface displacements 21 ηηη += , at point . It 
is assumed the mean JONSWAP spectrum in deep water. 

0=Y
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a1η

b1η
H/1η
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Figure 1. The linear wave group 1η  when a large wave of height H occurs at ( ) and the 
two groups 

0=Y

a1η  and b1η  in which is decomposed 1η  ( ba 11 ηη −≡ ). 
 

-0.6

-0.3

0

0.3

0.6

-1.5 -1 -0.5 0 0.5 1 1.5

1η

pTT /

H/η

2η

21 ηηη +=

Figure 2. Let us assume that a wave with height H occurs at ( 0=Y ), with ∞→σ/H : the 
linear wave group 1η , the second-order term 2η  and the total second-order free surface 
displacements 21 ηηη += . The spectrum is the mean JONSWAP and the water is deep. 

 
 

Finally Figure 3 shows a particular of Figure 2. The effects of second-order, for the highest 
wave, increased the crest height by 16% (it is equal to 0.58H), and decreased the trough depth 
by 16% (the trough amplitude is equal to 0.42H).  
As for the period Th of highest wave, from linear QD theory we obtain that it is slightly 
smaller than Tp (Boccotti, 2000). For example, for the mean JONSWAP spectrum Th=0.92Tp. 
As we can see the second-order effects do not modify Th. A slightly difference may be 
appreciated for the crest and trough duration’s, which are respectively equal to 0.43Tp and 
0.49Tp (from the linear QD theory they are both equal to 0.46Tp).  
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Figure 3. Particular of figure 2: the linear 1η  and the total  
second-order free surface displacements 21 ηηη += . 

 
 
 6.2. The second-order wave groups when a high crest occurs (‘New wave’) 
 
..1 The undisturbed wave field  
Let us suppose that a large crest of height HC occurs at 0=Y , 0=T , in an undisturbed wave 
field. Following the first formulation of the quasi-determinism theory (‘New wave’) we have 
that a random wave group, at the apex of its development, generates this wave. To the second-
order in the Stokes expansion, the wave group when a large crest occurs is given by Eq. 
(B10).  
The first and second-order wave group, at point Y=0, is shown in Figure 4a.  
 
..2 The wave field in front of the vertical wall 
 
The wave group in front of a vertical wall, when a large wave occurs, is obtained in Appendix 
C. Therefore, if a large crest of height HC occurs at wall ( 0=Y ), at time 0=T , the second-
order free surface displacements is given by Eq. (C18). Both first and second-order free 
surface displacements are given in Figure 4b. 
 
The comparison between Figures 4a and 4b (both are obtained for the mean JONSWAP 
spectrum) shows that non-linear effects at a vertical wall are greater than in an undisturbed 
field. For example the second-order highest crest is equal to 1.11HC in an undisturbed field 
and to 1.26HC on the vertical wall. 
Finally we have that, in time domain, both non-linear wave groups are symmetric with respect 
to Y-axis. 
 
 

6.3.   Comparison with data  
 
To validate our analytical predictions, Monte Carlo simulations of second-order sea states 
with the mean JONSWAP spectrum have been carried out, by generating 40000 waves. The 
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data have been then processed to analyze the structure of time domain wave groups, if either a 
large crest height (section 6.3.1), or a large crest-to-trough wave height, occurs (section 
6.3.2).  
The wave groups with a large crest, in time domain, have been also compared with average 
wave time histories given by Taylor and Williams (2002). 
 
6.3.1 The largest crest heights from numerical simulation and field data 
 
Figure 5 shows the highest crest obtained processing data of numerical simulation: the crest 
amplitude C is equal to 1.32 times the significant wave height; the crest duration is equal to 
∆tC=0.40Tp. Troughs, front and back the highest crest, have amplitudes 0.54C and 0.68C and 
duration 1.34 ∆tC and 1.27 ∆tC respectively. Linear profile is given by broken line (it is easily 
obtained from numerical simulation, by considering the 1η  term only).  
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0

0.5

1

1.5

-1.5 -1 -0.5 0 0.5 1 1.5

1η

pTT /

H/η

2η

C 21 ηηη +=C

-1.5

-1

-0.5

0

0.5

1

1.5

-1.5 -1 -0.5 0 0.5 1 1.5

1η

pTT /

H/η

2η

21 ηηη +=C (b)

(a)

Figure 4. Let us assume that a crest of height HC occurs at ( 0=Y ), with ∞→σ/CH : the 
linear wave group 1η , the second-order term 2η  and the total second-order free surface 
displacements 21 ηηη += . The spectrum is the mean JONSWAP and the water is deep. 
Upper panel: the undisturbed wave field. Lower panel: the wave group at a vertical wall. 
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(a )     C= 6.6m  (H s = 5m; T p = 9.5s)
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t/T p
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1

-1.2 -0.9 -0.6 -0.3 0 0.3 0.6 0.9 1.2

T/T p

η (Y' ,Τ )/C

T/T p

(b )  Analytical prediction, at point Y' =0.06L p0

Figure 5. Comparison between largest crest obtained from Monte Carlo simulation of 40000 
non-linear waves with mean JONSWAP spectrum, and analytical prediction. Upper panel 

shows the numerical data: dotted line gives the linear free surface displacement and 
continuous line gives the second-order one. Lower panel gives the theoretical prediction 

),'( TYη  obtained from Eq. (B10), at point 06.0/' 0 =pLY . 
 
Theoretical prediction, given in lower panel, is obtained from Equations (B3) and (B10). In 
particular, because the )(tη  profile of Figure 5 is non-symmetric, the ),'( TYη  is calculated 
at fixed points  close to 0. The value of  is obtained with an iterative procedure: we 
choose the value 

'Y 'Y
'YY =  which maximizes the coefficient of correlation between time series 

)(tη  of upper panel and ),( TYη  [let us note that a time shift is included to have largest 
crests of )(tη  and ),( TYη  at equal time instant]. As we can see theoretical ),'( TYη  profile 
of Fig. 5b well agree with data.  
Theoretical linear profile, obtained from quasi-determinism theory [Eq. (B3)], is given by 
broken line.  
 
Finally theoretical prediction is compared with the average wave time histories when a high 
wave crest (or a deep trough – see Note) occurs, obtained by Taylor and Williams (2002) by 
processing field data with significant wave height m4≅sH , from WACSIS dataset 
(Forristall et al, 2002).  
The use of the average profile in time domain is useful because the individual actual waves 
are both irregular and non-linear. Figure 6 shows then the average shape of the largest crest, 
which was obtained by considering the surface displacement time series around the 10% of 
largest crest (Taylor and Williams, 2002). Each crest was time shifted, so to have the 
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maximum value of free surface displacement at time T=0. Figure 6 shows also the average 
shape of largest troughs (see Note), which are taken positive. The peak period, for a Pierson-
Moskowitz spectrum, is calculated as (Boccotti, 2000):  

 gHT sp /7.4 π= . (40) 

In detail, from the average shape of the largest crest we obtain that: the largest crest has 
amplitude C and duration equal to ∆tC=3.4s; troughs, front and back the highest crest, have 
amplitudes 0.46C and 0.49C and duration 1.42 ∆tC and 1.49 ∆tC respectively. From the 
average shape of the largest trough we obtain that: the largest trough has amplitude 0.78C and 
duration equal to 1.15∆tC; crests, front and back the largest trough, have amplitudes 0.54C 
and 0.52C and duration 1.27 ∆tC and 1.28 ∆tC respectively.  
 
In the lower panel we find our analytical prediction for the Pierson-Moskowitz spectrum: the 
deterministic wave profiles 21 ηηη +=  when a large crest occurs and 21 ηηη −=−  (see Note) 
when a large trough occurs are plotted. 
In detail, from η  non-linear theoretical profile (crest) we obtain that the largest crest has 
amplitude C and duration ∆tC’=0.36Tp; the front/back trough has amplitude 0.54C and 
duration equal to 1.40 ∆tC’. From 'η  non-linear theoretical profile (trough) we obtain that the 
largest trough has amplitude 0.78C and duration 1.26∆tC’; the front/back crest has amplitude 
0.66C and duration equal to 1.27 ∆tC’.  
We find then a good agreement between data and analytical prediction, both for the crest and 
the trough profiles: the crests are taller and spikier, and the troughs are smaller and broader. 
 
 
7. Applications: The highest sea wave groups in space domain  
 
The quasi-determinism theory, in both the formulations, enables us to obtain both the free 
surface displacement and velocity potential in space-time domain. In section 6 the wave 
groups with large waves have been analyzed in time domain, at a fixed point. Here we 
consider the wave groups in space domain, at fixed time instant. 
In all the applications have been assumed the mean JONSWAP spectrum and the water deep. 
 
 
 7.1. The second-order wave groups when a large crest-to-trough wave height occurs 
 
Figure 9 shows the non-linear wave group in space domain, when a large crest-to-trough wave 
height occurs, at some fixed time instant. The highest wave occurs at T=0, at the apex stage of 
group development. As we can see, a well-defined wave group moves along the y-axis. The 
wave group (individual wave) propagation speed is nearly equal to the group (wave) celerity 
for a periodic wave with period equal to the peak period Tp; in deep water, group celerity is 
then equal to one half the wave celerity. Because propagation speed for individual waves is 
greater than propagation speed of the wave group, each wave ‘runs along the envelope from 
the tail where it is born to the head where it dies’ (Boccotti, 2000). 
The wave group shows also firstly a development stage, during which the height of the largest 
wave (at that fixed instant) increases; therefore at time to we have the apex of the group 
development: at this time the wave crest at point xo reaches its maximum. After to we have the 
group decay stage.  
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All these results on the space time evolution of non-linear wave groups are in full agreement 
to those of Boccotti’s book (2000), from the first-order quasi-determinism theory.  

As for the second-order effects, they increase the crest amplitude and decrease the trough 
amplitude.  

 

 7.2. The space-domain second-order wave groups in front of a vertical wall, when a 
large crest occurs 

 
Figure 10 shows the non-linear wave group in space domain, when a large crest of height HC 
occurs at a vertical wall. The highest crest occurs at T=0, on the wall (Y=0).  
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WACSIS field data (Taylor & Williams, 2002)

Analytical prediction [Eqs. (B3) and (B10)]
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Figure 6. Upper panel: the average shape of the 10% of largest crest and trough  
amplitudes from WACSIS dataset (from Taylor and Williams, 2002).  

Lower panel: analytical prediction for the Pierson-Moskowitz spectrum  
[Eqs. (B3) and (B10)]; in particular we have the deterministic wave profiles 21 ηηη +=  when 

a large crest occurs and 21' ηηη −=−  when a large trough occurs. 



16 FELICE ARENA 
 

 

-1.2

-0.6

0

0.6

1.2

-1 -0.5 0 0.5 1

H/η

pTT /

C

Figure 7. The average shape of the 1% of largest crest amplitudes, from second-order 
numerical simulation of 40000 waves. Dotted line gives the average linear free surface 
displacement (obtained processing only linear component from numerical simulation). 

Continuous line gives the average second-order free surface displacement.  
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Figure 8. The average shape of the 1% of largest crest-to-trough wave height, from second-
order numerical simulation of 40000 waves. Dotted line gives the average linear free surface 

displacement (obtained processing only linear component from numerical simulation). 
Continuous line gives the average second-order free surface displacement.  

 
 

Note that in front of the vertical wall we have standing waves, as we may appreciate from 
Figure 11, which shows the non-linear free surface displacement at fixed time instant (T-
to)/Tp, between –1 and 0, when largest crest occurs at wall (Y=0) at time instant to].  
In particular Figure 11 may be compared with Figure 12, which shows the same wave group 
[that is the non-linear free surface displacement at fixed time instant (T-to)/Tp, between –1 and 
0] in an undisturbed field, when a large crest occurs at Y=0, T=to.  
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Figure 9. The second-order free surface displacements in space domain  
(in an undisturbed field), at some fixed time instant,  

when a very large crest-to-trough wave with height H occurs at (Y=0, T=to). 
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Figure 10a. The second-order free surface displacements in front of a vertical wall  

(in space domain), at some fixed time instant,  
when a very high crest with height HC occurs at (Y=0, T=to). Note that dotted line at lower 

panel (T=to) given linear free surface displacement (from QD theory). 
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Figure 10b. See caption of Figure 10a. 
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Figure 11. The second-order free surface displacements in front of a vertical wall  
(in space domain), at some fixed time instant, when a very high crest with height HC occurs  

at (Y=0, T=to). To each line is associated the time instant defined as (T-to)/Tp,  
which ranges between –1 and 0. 
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Figure 12. The second-order free surface displacements in an undisturbed field  
in space domain, at some fixed time instant, when a very high crest with height HC occurs  

at (Y=0, T=to). To each line is associated the time instant defined as (T-to)/Tp,  
which ranges between –1 and 0. 
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APPENDIX A.  
THE SYSTEM OF DIFFERENTIAL EQUATIONS  

FOR AN IRROTATIONAL FLOW WITH A FREE SURFACE 
 
 
Let us consider an irrotational flow with a free surface, at a constant depth d. Let the vertical 
free surface displacement be ),,( tyxη , and the velocity potential ),,,( tzyxφ where the 
vertical z axis, positive upwards, has origin at the mean water level and (x,y) denote the 
horizontal plane in Cartesian co-ordinates. 
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Both the velocity potential φ  and the free surface displacement η  have to satisfy the system 
of differential equations, for the irrotational flow with a free surface. This system includes:  
i) the Bernoulli equation 
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ii) the free surface general equation 

 
tyyz

zz ∂
∂

+
∂
∂

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

=⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

==

ηηφφ

ηη

 (A2) 

iii) the continuity equation 
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iv) the solid boundary condition at the horizontal bottom 
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To solve the first two equations, a Taylor series expansion is usually taken at z=0 (mean water 
level) (Longuet-Higgins, 1963). For example, the second term in Eq. (A1) gives: 
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Furthermore perturbation method may be applied, to obtain the solution: the free surface 
displacement and the velocity potential are written as  

  (A6) )o(),o( 2
21

2
21 HH ++≡++≡ φφφηηη

(where o( 2H ) define terms of order smaller than 2H , and iη  and iφ  have order iH ).  
Finally, from Equation (A1-A4) we may derive the linear and the second-order system.  
To the first-order, the system (A1-A4) gives: 
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The second-order system, particularized for long-crested waves (two-dimensional) is given by 
Equations (12-15); note that it is given as a function of the independent variables , 
which are defined as 

TzY ,,

oyyY −=  (direction of wave propagation), ottT −= , with  an 
arbitrary point and  an arbitrary time instant.   

oy

ot
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APPENDIX B.  
WHAT HAPPENS WHEN A LARGE CREST HEIGHT  

OCCURS: THE LINEAR QUASI-DETERMINISM THEORY AND  
THE EXTENSION TO THE SECOND-ORDER 

 
 
B.1 THE FIRST FORMULATION OF THE QUASI-DETERMINISM THEORY 
 
The first formulation of the quasi-determinism theory by Boccotti (1981, 1982, 2000), for 
linear high wave crest (‘New wave’), enables us to predict the space-time evolution of the free 
surface displacement and of the velocity potential when a very high crest occurs at some fixed 
time and location.  
The theory shows that, if a local wave maximum of given elevation HC occurs at time  at a 
fixed point ( , ), and if 

ot
ox oy ∞→σCH  ( σ  being the standard deviation of the free surface 

displacement), with probability approaching 1 the surface displacement at point 
( ) and the velocity potential at point (YyXx oo ++ , YyXx oo ++ , , z ), at time , are 
respectively equal to the deterministic form  

Tto +

 Cooo HTYXTtYyXx
)0,0,0(
),,(),,(1 Ψ

Ψ
=+++η , (B1) 

 Cooo HTzYXTtzYyXx
)0,0,0(

),,,(),,,(1 Ψ
Φ

=+++φ , (B2) 

where the space-time covariances ),,( TYXΨ  and ),,,( TzYXΦ  are defined by Equations (4) 
and (5).  
Let us note that both the expressions (B1) and (B2) are exact for ∞→σCH , that is for the 
crest height very large with respect to the mean crest height.  
 

B1.1) The linear deterministic wave group for long-crested waves in an undisturbed field  
For long-crested waves in an undisturbed wave field the free surface displacement [see 

Eq. (B1)] of the wave group at point  at time Yyo + Tto + , when an exceptional crest height 

of given elevation HC occurs at time  at fixed point , may be rewritten as a function of 
the frequency spectrum 

ot oy
)(ωE : 
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The velocity potential at a fixed point ( +Y, z), when the very large crest occurs at point 
, is then given by:  

oy

oy
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where the wave number k is obtained from equation .  gkdk /)tanh( 2ω=

 
 
B.2 THE SECOND-ORDER η  AND φ  EXPRESSIONS WHEN A LARGE CREST 

OCCURS  
 
The second-order η  and φ , when a large crest occurs, are easily obtained: in this case the 
linear free surface displacement 1η  [Eq. (B1)] and velocity potential 1φ  [Eq. (B2)] give a 
wave group, with largest crest with amplitude  at (Y=0,T=0). Therefore they may be 
rewritten in discrete form as a summation of N terms:  
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where 
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By solving the second-order system given by Equations (12-15), following procedure given 
by Sharma & Dean (1979), we obtain: 
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or, as a function of the frequency spectrum:  
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The second-order free surface displacement and velocity potential, when the large crest of 
amplitude  occurs, are then CH 21 ηηη +=  and 21 φφφ +=  respectively. 
Note that expressions (B10) and (B11), for the special case of long-crested waves in deep 
water (see section 4), were derived by Arena & Fedele (2003) and Fedele & Arena (2003) 
with a different approach. 

 
 
 
 

____________________________________ 
 
 

APPENDIX C.  
REFLECTION OF NON-LINEAR WAVE GROUPS: THE EXTENSION TO THE 

SECOND-ORDER OF THE QUASI-DETERMINISM THEORY  
 
 

The reflection deals with the interaction of waves with a vertical wall.  
Here the reflection of long-crested waves is considered; in particular we analyze what 

happens when a large crest height occurs on a vertical wall. The linear analytical solution for 
the quasi-determinism theory (‘New wave’), for waves on a vertical wall (Boccotti, 1989, 
2000), is then extended to the second-order. 

Let the linear incident free surface displacement i1η  and velocity potential i1φ  be given 
by Equations (B10) and (B11) respectively.  

In front of the vertical wall we have the reflected waves, such to satisfy the boundary 
condition at the wall. Being the wall located at 0=Y , this condition yields: 
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∂
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φ , (C1) 

where the total linear velocity potential is given by ri 111 φφφ += , with r1φ  the reflected term. 
In detail, the reflected random waves which satisfy the condition (C1) are derived by 
considering that the jth component of incident wave, has amplitude , frequency '

jα jω  and 

direction 0=jθ  ( j∀ , because we have long crested waves), where we now define  

 TkYTY ωθθωϕ −≡ cos),,,(' , (C2) 

in place of ),,( TYωϕ . 
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We find that (see Boccotti, 2000) the corresponding jth reflected wave component has 
amplitude , frequency ''

jjr αα = jjr ωω =  and direction πθ =jr . 
Therefore the reflected waves are given by 

 [ ]),,,('cos),(
1

'
1 TYTtYy jrj

N

j
joor θωϕαη ∑

=

=++ . (C3) 

The total linear free surface displacement in front of the vertical wall, which is defined 
as 

 riooR TtYy 111 ),( ηηη +=++ , (C4) 

is then  
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The corresponding total velocity potential, to the first-order, in front of a vertical wall is 
then: 
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with definitions (C2) and (C6).  
Note that Equations (C5) gives the wave group when a large crest height, of amplitude 2HC, 
occurs at a point close to (or on) the vertical wall. 
The second-order R2η  and R2φ  are then obtained following the procedure solution of section 

3. In this case we have a slightly different structure of  and  coefficients. In detail, ±
nmA ±

nmB

R2η  and R2φ , for long-crested waves, are given respectively by:  
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where  
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After some algebra, the free surface displacements R2η  is given by: 
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or, as a function of the frequency spectrum: 
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The amplitude of linear highest wave at wall, given by Eq. (C5), is equal to 2HC; Eq. (C17) 
gives then the second-order free surface displacement when the largest crest of amplitude 
equal to 2HC occurs.  
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Furthermore, if we have that a large crest height of amplitude HC occurs at a fixed point Y in 
front of the wall, at time T=0, the total second-order free surface displacements Rη  
( RR 21 ηη +≡ ) is given by: 

 [{
] ( ) [
] ( )} nmmnmnnm

mnnmmnmnnm

mnnmmn
C

CR

TTYkYkA

YkYkATTYkYkA

YkYkAEEEH

kYTEEHTY

ωωωω

ωω

ωωωω

ωωωωωη

ddcos)cos(
~

)cos(cos)cos(
~

)cos()()(d)(
8

d)cos())cos((d)(),(

00

2

0

2

0

1

0

+−

+++−+

+−
⎭⎬
⎫

⎩⎨
⎧+

+
⎭⎬
⎫

⎩⎨
⎧=

+

+−

−
∞∞−∞

∞−∞

∫∫∫

∫∫

 (C18) 

and the corresponding total second-order velocity potential Rφ  ( RR 21 φφ +≡ ) is  
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where 
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Note that this second-order extension is exact if the large crest occurs on the vertical wall, that 
is if y0=0. In this case Yaxis coincides with yaxis. The general solution, which is valid for the 
largest waves occurring at any fixed point in front of the wall, may be derived with a similar 
procedure.  
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Nomenclature  
 
E 
Ew

frequency spectrum  
nondimensional frequency spectrum  

α 
αP

wave amplitude  
Phillips’s parameter 

g acceleration of gravity  η  surface displacement  
H 
HC

crest-to-trough wave height 
crest amplitude 

η  surface displacement of deterministic 
wave groups  

Hs 
k 
L 

significant wave height 
wave number 
wavelength 

ρ 
σ 

water density  
r.m.s. surface displacement of a sea 
state 

Th 
Tp 
T 

period of highest waves 
peak period 
time 

φ 
φ  

velocity potential  
velocity potential of deterministic 
wave groups 

to 
w 

fixed time instant 
nondimensional frequency 

Φ covariance of surface displacement 
and velocity potential 

x 
xo

horizontal coordinate axis 
fixed point of the x-axis 

21, χχ
 

shape parameters of the JONSWAP 
spectrum  

X 
y 

horizontal axis with origin at point xo  
horizontal coordinate axis 

*ψ  
Ψ  

narrow bandedness parameter  
covariance of surface displacement  

Yo
Y 

fixed point of the y-axis  
horizontal axis with origin at point yo  

θ angle between wave direction and y 
axis 

z vertical coordinate axis, with the 
origin at the mean water level  

ω 
ωp

angular frequency  
peak frequency  
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